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ABSTRACT

Background: With repeated measures, the traditional ANOVA F-statistic requires fulfillment of normality and sphericity. 
Bootstrap-F (B-F) has been proposed as a procedure for dealing with violation of these assumptions when conducting 
a one-way repeated measures ANOVA. However, evidence regarding its robustness and power is limited. Our aim is to 
extend knowledge about the behavior of B-F with a wider range of conditions. Method: A simulation study was performed, 
manipulating the number of repeated measures, sample sizes, epsilon values, and distribution shape. Results: B-F may 
become conservative with higher values of epsilon, and liberal under extreme violation of both normality and sphericity 
and small sample sizes. In these cases, B-F may be used with a more stringent alpha level (.025). The results also show 
that power is affected by sphericity: the lower the epsilon value, the larger the sample size required to ensure adequate 
power. Conclusions: B-F is robust under non-normality and non-sphericity with sample sizes larger than 20-25. 

RESUMEN

Antecedentes: El estadístico F del ANOVA de medidas repetidas requiere el cumplimiento de los supuestos de 
normalidad y esfericidad. El procedimiento F-bootstrap (F-B) se ha propuesto como alternativa al ANOVA cuando 
se violan estos supuestos. Sin embargo, la evidencia empírica sobre su robustez y potencia es limitada. El objetivo es 
analizar el comportamiento de F-B en un mayor número de condiciones. Método: Se realizó un estudio de simulación, 
manipulando el número de medidas repetidas, tamaño muestral, valores de épsilon y forma de la distribución. Resultados: 
El procedimiento F-B resulta conservador con valores altos de épsilon, y puede llegar a ser liberal bajo una violación 
extrema de la normalidad y esfericidad con tamaño muestral pequeño. En estos casos, F-B puede utilizarse con un 
nivel de alfa más restrictivo (.025). Los resultados también muestran que la potencia se ve afectada por la esfericidad: 
cuanto menor es el valor de épsilon, mayor es el tamaño muestral necesario para garantizar una potencia adecuada. 
Conclusiones: El procedimiento F-B es robusto en condiciones de no normalidad y no esfericidad con tamaños de 
muestra superiores a 20-25.

Cuándo Usar F-Bootstrap en ANOVA Unifactorial de Medidas Repetidas: Error 
de Tipo I y Potencia
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Introduction

Bootstrapping is a computing-intensive method introduced by 
Efron (1979) and colleagues (e.g., Efron & Gong, 1983; Efron & 
Tibshirani, 1993) that basically involves drawing random samples 
from the original dataset with replacement, and then computing the 
sample distribution for a given statistic for each bootstrap sample. 
This resampling process enables the estimation of confidence 
intervals, standard errors, and hypothesis tests, providing a robust 
alternative to traditional parametric methods. The method has a 
wide range of applications, including comparison of means tests, 
correlation and regression, multilevel analysis, mediation and 
moderation, graph analysis, time series analysis, and survival 
analysis (Chernick & LaBudde, 2011; Christensen & Golino, 2021; 
Hayes, 2017; Vallejo et al., 2013; Wilcox, 2022). The increasing 
popularity of bootstrapping for statistical inference has seen it 
gradually incorporated into the most common statistical software, 
such as R, SAS and IBM SPSS.

Bootstrap can be used in conjunction with different statistical 
procedures, including those derived from the general linear model 
such as regression analysis and analysis of variance (ANOVA), to 
make inferences about a population. In the case of ANOVA, this 
involves generating the empirical sampling distribution for 
the F-statistic by repeatedly resampling with replacement from the 
dataset, rather than using the theoretical distribution of the statistic. 
Because bootstrap does not rely on the parametric assumptions of 
normality and homogeneity of variance, it is particularly useful 
when these assumptions are violated (Chernick, 2008).

Simulation studies are valuable tools that involve running 
numerous random data sets to assess how a statistic performs under 
various conditions. Robustness in terms of Type I error is typically 
interpreted using Bradley’s liberal criterion (1978), which considers 
a statistic to be robust if its Type I error rate is between 2.5% and 
7.5% for an alpha of 5%.

When repeated measures are involved, traditional ANOVA 
(RM-ANOVA) requires normality and sphericity. Simulation 
studies have shown that the F-statistic of RM-ANOVA is generally 
robust to non-normality when the sphericity assumption is met 
(Berkovits et al., 2000; Blanca et al., 2023a; Keselman et al., 1996; 
Kherad-Pajouh & Renaud, 2015). Blanca et al. (2023a) found that 
the test was robust in 99.95% of the 1786 conditions studied, and 
also that the Type I error rate was only greater than .075 (specifically, 
.078) in the case of a design with four repeated measures, extreme 
departure from normality (skewness γ1 = 2.31, kurtosis γ2 = 8), 
and N = 10. However, RM-ANOVA is very sensitive to sphericity 
violation, rendering it a liberal test (Berkovits et al., 2000; 
Blanca et al., 2023b; Haverkamp & Beauducel, 2017, 2019; Voelkle 
& McKnight, 2012).

To control Type I error when sphericity is violated, the use 
of adjusted F-tests, such as the Greenhouse-Geisser (F-GG) and 
Huynh-Feldt (F-HF) adjustments, has been proposed. These 
two procedures modify the degrees of freedom of the F-statistic 
by a multiplicative factor, known as epsilon (ε), making it a 
more demanding test. The value of ε is considered an indicator 
of the amount by which the data depart from sphericity, and it 
ranges between 1/k-1 and 1, where k is the number of repeated 
measures. When the data meet the sphericity assumption, ε = 1, and 
the greater the departure from this value the greater the violation 

of sphericity. F-GG and F-HF differ in how ε is computed, and the 
decision over which procedure to use is controversial. Indeed, 
there is evidence for the superiority of both F-GG (Voelkle & 
MacKnight, 2012) and F-HF (Haverkamp & Beauducel, 2017, 
2019; Oberfeld & Franke, 2013), while some studies have found that 
both offer reasonable control of Type I error (Berkovits et al., 2000; 
Muller et al., 2007). A value-based strategy has also been proposed 
based on the expected value of ε. For example, Huynh and Feldt 
(1976) recommend using F-GG if ε is less than .75, and F-HF for 
ε greater than .75. More recently, Blanca et al. (2023b) established 
another cut-off point based on the results of a simulation study 
with normal data and a larger number of manipulated conditions 
than were considered in the aforementioned studies, taking the 
Greenhouse-Geisser ε estimation (ε̂  ) as reference. They suggested, 
as a general rule, using F-GG because it is more conservative, 
although in the event of discrepant results from the two procedures, 
they recommend using F-GG for ε̂  values below .60, and F-HF 
for ε̂  values of .60 or higher.

When normality and sphericity are simultaneously violated, 
the behavior of adjusted F-tests depends on several factors, 
namely sample size and the degree of violation of both sphericity 
and normality. Blanca et al. (2024) found that although the 
aforementioned rule generally holds under non-normality and 
non-sphericity, there are two exceptions in which neither F-GG nor 
F-HF is robust: a) With N ≤ 10, ε̂  ≤ .60, and severe deviation from 
normality (γ1 = 1.41, γ2 = 3) and, b) with N ≤ 30, ε̂  ≤ .60, and 
extreme deviation from normality (γ1 = 2, γ2 = 6 and 8). These 
authors discuss several available analytic alternatives, none of 
which is free of criticism, highlighting that bootstrapping may be 
the most promising alternative according to results obtained in other 
studies (e.g., Berkovits et al., 2000).

Berkovits et al. (2000) proposed a bootstrap method for one-way 
repeated measures ANOVA, referred to as bootstrap-F (B-F), which 
generates the bootstrap sample from centered data. They conducted 
a simulation study to analyze the behavior of this procedure in terms 
of Type I error with a four repeated measures design, introducing 
different values of sample size (10, 15, 30, and 60) and epsilon (.48, 
.57, .75, and 1). Distribution shape was also manipulated so as to 
include both normal data and distributions labeled as showing slight 
(γ1 = 1, γ2 = 0.75), moderate (γ1 = 1.75, γ2 = 3.75), and severe (γ1 = 3, 
γ2 = 21) deviation from normality. The results showed that B-F was 
a robust alternative under violations of sphericity and normality, 
even in small samples and with severe non-normality, with Type I 
error rates below 7.5% in all conditions manipulated. However, the 
test became conservative in some cases with ε = 1.

To our knowledge, the behavior of the B-F test proposed by 
Berkovits et al. (2000) has scarcely been investigated with one-
way designs, although it has been studied with split-plot designs. 
Vallejo et al. (2006) performed a simulation study in which they 
tested this procedure with a 3x4 design with N = 30, 45, and 60, 
ε = .50, .75, and 1, and the same non-normal distributions as 
Berkovits et al. (2000). The findings were consistent with those 
of Berkovits et al. (2000), insofar as the test was robust under non-
sphericity and non-normality but tended to be conservative with 
high values of ε. These results were subsequently confirmed by 
Vallejo et al. (2010) using a 3x4 design with N = 30 and 45, and 
ε = .50, in which they found that B-F controlled Type I error with 
different non-normal distributions. 
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Overall, the empirical evidence suggests that B-F is a robust 
procedure for dealing with violations of normality and sphericity. 
However, this evidence is limited as published simulation studies 
include a small number of manipulated conditions in terms of 
repeated measures, sample sizes, sphericity, and distribution shapes. 
The aim of the present study is therefore to extend knowledge 
about the robustness and power of B-F by considering a wider 
range of conditions. To this end, we included designs with 3, 4, and 
6 repeated measures, sample sizes from 10 to 180, ε̂  values from the 
corresponding lower bound to 1, and six distributions representing 
slight to extreme deviations from normality.

Bootstrap-F

The goal in using this procedure is to estimate an appropriate 
critical value when the null hypothesis is true. This is done by 
centering the data in each repeated measure condition, randomly 
generating B bootstrap samples with replacement from the centered 
data in each condition, computing the statistics for each bootstrap 
sample generated, and obtaining an estimate of the distribution 
of the statistic (Wilcox, 2003, p. 379). Berkovits et al. (2000) 
consider that the B-F procedure comprises the following steps:

1. Organize data in a matrix of N participants x K measurement 
occasions. To test the null hypothesis of equality of means 
among repeated measures, compute the F-statistic based on 
original data, labeled as observed Fo.

The data with 3 repeated measures shown in Table 1 provide 
an illustration of the procedure. The observed Fo is 92.19.

2. Center the data with the aim of estimating an appropriate 
critical value of the F-statistics, subtracting the respective 
mean of the kth level of the repeated measure from each 
observation: . This matrix will have the 
same distributional properties and the same covariance 

matrix as the original data (Berkovits et al., 2000). The 
data matrix is now:

Table 2 displays the data matrix with centered data (for the 
example shown in Table 1).

3. With the centered data, generate B bootstrap samples with 
replacement by randomly sampling N rows of data.

In the example, we would generate 599 bootstrap samples, 
although for illustrative purposes, only 2 are displayed in 
Table 3.

Table 1
Data Matrix for Illustrative Purposes

ID Measure 1 Measure 2 Measure 3

1 13 6 4

2 9 7 5

3 10 4 3

4 10 7 4

5 11 6 2

6 10 6 5

7 8 6 5

8 11 8 5

9 12 7 6

10 14 6 4

11 11 5 4

12 12 7 5

M
SD

10.92
1.67

6.25
1.05

4.33
1.07

Table 2
Data Matrix With Centered Data (for the Example Shown in Table 1)

ID Centered 1 Centered 2 Centered 3

1 2.08 -0.25 -0.33

2 -1.92 0.75 0.67

3 -0.92 -2.25 -1.33

4 -0.92 0.75 -0.33

5 0.08 -0.25 -2.33

6 -0.92 -0.25 0.67

7 -2.92 -0.25 0.67

8 0.08 1.75 0.67

9 1.08 0.75 1.67

10 3.08 -0.25 -0.33

11 0.08 -1.25 -0.33

12 1.08 0.75 0.67

Table 3
Bootstrap Samples 1 and 2 With Centered Data (C)

Bootstrap sample 1 Bootstrap sample 2

ID C 1 C 2 C 3 ID C 1 C 2 C3

1 2.08 -0.25 -0.33 2 -1.92 0.75 0.67

6 -0.92 -0.25 0.67 7 -2.92 -0.25 0.67

10 3.08 -0.25 -0.33 4 -0.92 0.75 -0.33

5 0.08 -0.25 -2.33 9 1.08 0.75 1.67

3 -0.92 -2.25 -1.33 8 0.08 1.75 0.67

11 0.08 -1.25 -0.33 7 -2.92 -0.25 0.67

12 1.08 0.75 0.67 5 0.08 -0.25 -2.33

8 0.08 1.75 0.67 6 -0.92 -0.25 0.67

3 -0.92 -2.25 -1.33 5 0.08 -0.25 -2.33

11 0.08 -1.25 -0.33 2 -1.92 0.75 0.67

10 3.08 -0.25 -0.33 12 1.08 0.75 0.67

8 0.08 1.75 0.67 3 -0.92 -2.25 -1.33

F1
* = 3.12 F2

* = 2.66
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4. Compute F-statistics with data from each bootstrap sample, 
labeled as F1

*, …, FB
*, thus creating the empirical sampling 

distribution of the F-statistic. The F-statistics for bootstrap 
samples 1 and 2 are equal to F1

* = 3.12 and F2
* = 2.66, 

respectively. Sort the F* values in ascending order. Suppose 
that we obtain a set of F* values after performing 599 bootstrap 
samples. We then sort these values in ascending order, resulting 
in the following ranking: (1) F3

* = 0.95, (2) F2
* = 2.66, (3) 

F1
* = 3.12, …, (569) F328

* = 5.03, ..., (599) F430
* = 52.34.

5. Estimate the critical value Fc
*, where c = (1 – α) B. The Fo of 

step 1 is compared with this critical value, and hence the null 
hypothesis is rejected if Fo ≥ Fc

*. For instance, with α = .05 and 
B = 599 bootstrap samples, c = .95 * 599 = 569.05. The F* in 
position 569 will thus be the critical value Fc

*. The proportion 
of F* values that are larger than the observed Fo represents the 
bootstrap p-value (Berkovits et al., 2000; Vallejo et al., 2010). 
The null hypothesis of equality of means is rejected if this 
p-value is less than or equal to .05. In the example, the F*-
statistic in position 569 is the critical value: Fc

* = 5.03. As 
Fo = 92.19 is larger than 5.03, the null hypothesis of equality 
of means among repeated measures is rejected. There is no F* 
value larger than Fo, yielding a p < .001.

The procedure can be performed using the WRS2 library of R 
(Mair & Wilcox, 2020), with the rmanovab function and without 
using trimmed means.

Method

Instrument

A simulation study was carried out using the interactive matrix 
language (IML) module of SAS 9.4. A series of macros was 
designed to generate data. Non-normal data were generated using the 
procedure proposed by Fleishman (1978), which applies a polynomial 
transformation that simulates data with specific values of skewness 
and kurtosis. To simulate data with different degrees of sphericity 
violation, we generated a series of unstructured covariance 
matrices with different values of ε̂  for each repeated measure 
condition. The unstructured matrix was used because it is the most 
general covariance structure (Kowalchuk et al., 2004) and is 
typically found in longitudinal behavioral data (Arnau et al., 2014; 
Bono et al., 2010). The probability of the values associated with 
B-F was calculated using PROC GLM of SAS (more details about 
the simulation procedure with SAS are available upon request 
from the corresponding author). Five thousand replications were 
performed for each condition manipulated with B = 599 bootstraps, 
as used elsewhere (Vallejo et al., 2006, 2010). This number was 
selected based on the recommendation that α should be a multiple 
of (B + 1)−1 (Wilcox, 2022). In addition, simulation studies suggest 
that in terms of probability coverage, there is little or no advantage 
to using B > 599 when α = .05 (Wilcox, 2022). 

Procedure

Type I error rates were recorded, reflecting the percentage of 
false rejections of the null hypothesis at the 5% significance level. 
Robustness of B-F was assessed based on Bradley’s (1978) liberal 
criterion, which considers a procedure to be robust if the Type I 
error rate is between 2.5% and 7.5% for a nominal alpha of 5%. 

The procedure is considered conservative if the Type I error rate is 
below the lower bound, and liberal if it is above the upper bound. 
This criterion was chosen because it is widely used in simulation 
studies and in research focused on repeated measures (e.g., 
Arnau et al., 2012; Berkovits et al., 2000; Keselman et al., 1999; 
Kowalchuk et al., 2004; Livacic-Rojas et al., 2010; Oberfeld & 
Franke, 2013; Vallejo et al., 2006, 2010, 2011), thus facilitating the 
comparison of results across similar studies. 

The variables manipulated for a one-way design were:
1. Number of repeated measures (K): The repeated measures 

were 3, 4, and 6.
2. Total sample size (N): Sample sizes were 10, 15, 20, 25, 30, 

40, 50, 60, 70, 80, 90, 100, 120, 150, and 180.
3. Epsilon (ε̂  ): The Greenhouse-Geisser estimation of epsilon 

was used (Box, 1954; Geisser & Greenhouse, 1958; 
Greenhouse & Geisser, 1959). Depending on the number of 
repeated measures, ε̂  values ranged from the lower limit to 
1. For K = 3, ε̂  values were .50, .60, .70, .80, .90, and 1; for 
K = 4, they were .33, .40, .50, .60, .70, .80, .90, and 1; and 
for K = 6, they were .20, .30, .40, .50, .60, .70, .80, .90, and 1. 

4. Distribution shape: Six distributions were used, representing 
slight to extreme deviations from normality, chosen from 
among those used by Blanca et al. (2024). Skewness and 
kurtosis values are shown in Table 4.

Empirical power was also calculated as the percentage rejection 
of the null hypothesis at a significance level of 5%. It was analyzed 
by selecting mean values with a linear pattern in which the 
means increase linearly and proportionally to each other (e.g., 0, 
0.5, 1), with medium effect size, f ≈ 0.25. The number of repeated 
measures and N were the same as those for Type I error. Epsilon 
values (ε̂ ) ranged from the lower limit to .90. To simplify the 
study, distributions 2, 3, and 6 were selected so as to represent 
the variability of performance of B-F with respect to Type I error 
(i.e., B-F performed similarly in distributions 3 and 4, and also in 
distributions 5 and 6). These distributions correspond to moderate 
(γ1 = 1, γ2 = 1.50), severe (γ1 = 1.41, γ2 = 3), and extreme deviation 
from normality (γ1 = 2.31, γ2 = 8).

Table 4
Skewness (γ1) and Kurtosis (γ2) Coefficients for Each Simulated Distribution

Distribution Type γ1 γ2

1 - 0.4 0.8

2 Gamma (α = 4) 1 1.50

3 Gamma (α = 2) 1.41 3

4 Gamma (α = 1.5) 1.63 4

5 Exponential 2 6

6 Gamma (α = 0.75) 2.31 8

Results

Type I Error Rate

Type I error rates for each K, distribution, N, and ε̂  value are 
displayed in Figures 1-3 (detailed tables can be found at https://
dx.doi.org/10.24310/riuma.37706). The results are summarized in 
Table 5. For K = 3 and 4, B-F is robust with distributions 1-4, with 
maximum values of γ1 and γ2 equal to 1.63 and 4, respectively. For 
the distribution with γ1 = 2 and γ2 = 6, the procedure is conservative 

https://dx.doi.org/10.24310/riuma.37706
https://dx.doi.org/10.24310/riuma.37706
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Figure 1
Type I Error Rate (Percentage) for K = 3 as a Function of Distribution Shape, N, and ε̂  

Note. In parentheses: skewness and kurtosis coefficients.

Note. In parentheses: skewness and kurtosis coefficients.

Figure 2
Type I Error Rate (Percentage) for K = 4 as a Function of Distribution Shape, N, and ε̂  
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with high values of ε̂  (ε̂  =1 for K = 3, and ε̂  ≥ .90 for K = 4) and 
small sample size (N = 10). This tendency to be conservative is also 
found for both K = 3 and K = 4 for the distribution with γ1 = 2.31 
and γ2 = 8 for high values of ε̂  and small sample size. However, with 
this distribution B-F tends to be liberal with N = 10 and lower values 
of epsilon (ε̂  ≤ .60 for K = 3 and ε̂  ≤ .50 for K = 4).

For K = 6, B-F is only robust under all conditions for the 
distribution with slight deviation from normality (γ1 = 0.4, γ2 = 0.8). 
With the remaining distributions, the test tends to be liberal with 
extreme deviation from normality, lower values of epsilon, and 
small sample size. For the distribution with γ1 = 2 and γ2 = 6, 
B-F is liberal with ε̂  = .30 and N = 10, whereas in the case of the 
distribution with γ1 = 2.31 and γ2 = 8, B-F is liberal with ε̂  = .20 and 
N = 10 and with ε̂  = .30 and N = 10-20. In addition, and as with 
K = 3 and 4, it tends to be conservative with high values of ε̂  and 
small sample size. The worst scenario is with extreme deviation 
from normality (γ1 = 2.31, γ2 = 8), in which B-F is conservative with 
ε̂  = .80 and N = 10-15, and with ε̂  ≥ .90 and N = 10-25. 

Statistical Power

Empirical power for each K, distribution, N, and ε̂  value are 
displayed in Figures 4-6 (detailed tables can be found at  https://
dx.doi.org/10.24310/riuma.37706). Table 6 shows the sample size at 
which a power of 80% is reached. As expected, the results show 

Note. In parentheses: skewness and kurtosis coefficients.

Figure 3
Type I Error Rate (Percentage) for K = 6 as a Function of Distribution Shape, N, and ε̂  

Table 5
Summary of the Results Obtained for Type I Error

D γ1 γ2 K = 3 K = 4 K = 6

1 0.4 0.8 Robust Robust Robust

2 1 1.5 Robust Robust C: ε̂ = 1, N = 10-15
Otherwise robust

3 1.41 3 Robust Robust C: ε̂ = .90, N = 10-15
ε̂ = 1, N = 10-15

Otherwise robust

4 1.63 4 Robust Robust C: ε̂ = .80, N = 15
ε̂ = .90, N = 10-15
ε̂ = 1, N = 10-15
Otherwise robust

5 2 6

C: ε̂ = 1, N = 10

Otherwise robust

L: ε̂ = .33, N = 10
ε̂ = .40, N = 10

C: ε̂ = .90, N =10
ε̂ = 1, N = 10

Otherwise robust

L: ε̂ = .30, N = 10

C: ε̂ = .80, N = 15
ε̂ = .90, N = 10-20
ε̂ = 1, N = 10-25
Otherwise robust

6 2.31 8 L: ε̂ = .50, N = 10
ε̂ = .60, N = 10

C: ε̂ = 1, N = 10-15

Otherwise robust

L: ε̂ = .33, N = 10
ε̂ = .40, N = 10
ε̂ = .50, N = 10

C: ε̂ = .90, N = 10
ε̂ = 1, N = 10-25

Otherwise robust

L: ε̂ = .20, N = 10
ε̂ = .30, N = 10-20

C: ε̂ = .80, N = 10-15
ε̂ = .90, N = 10-25
ε̂ = 1, N = 10-25

Otherwise robust

Note. D: Distribution; C: Conservative; L: Liberal; γ1: Skewness; γ2: Kurtosis.

https://dx.doi.org/10.24310/riuma.37706
https://dx.doi.org/10.24310/riuma.37706
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Note. In parentheses: skewness and kurtosis coefficients.

Figure 4
Power (Percentage) for K = 3 as a Function of Distribution Shape, N, and ε̂  

Note. In parentheses: skewness and kurtosis coefficients.

Figure 5
Power (Percentage) for K = 4 as a Function of Distribution Shape, N, and ε̂  
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that power increases with sample size and also that it is affected 
by ε̂  values, such that a large sample is required to reach adequate 
power with ε̂  values close to the lower bound. Overall, for K = 3, this 
power is achieved with 60-80 participants across all distributions and 
ε̂  values. For K = 4, this power is reached in a range of 70-
100 participants when ε̂  ≤ .50, and 60-70 when ε̂  ≥ .60. For K = 6, 
70-100 participants are required when ε̂  ≤ .40, and 40-50 for ε̂  ≥ .50.

Discussion

The aim of this study was to extend knowledge about the robustness 
and power of B-F by considering a wider range of conditions than has 
been the case previously. To this end, we simulated designs with 3, 4, 
and 6 repeated measures, sample sizes from 10 to 180, ε̂  values from 
the corresponding lower bound to 1, and six distributions representing 
slight to extreme deviations from normality.

Regarding robustness, the results show that Type I error rates vary 
as a function of the number of repeated measures, distribution shape, 
epsilon value, and sample size. For K = 3, B-F is robust for distributions 
with γ1 ≤ 1.63 and γ2 ≤ 4 in all conditions manipulated. However, with 
higher values of γ1 and γ2 the procedure becomes conservative with 
ε̂  = 1 and N = 10. With the most extreme deviation from normality 
(γ1 = 2.31 and γ2 = 8), the procedure is liberal with smaller values of ε̂  
and N = 10. These results indicate that for K = 3, B-F remains robust 
with violation of both sphericity and normality for distributions with 
γ1 ≤ 1.63 and γ2 ≤ 4, but with more severe deviations from normality a 
sample size larger than 10 is required for low values of ε̂ .

Note. In parentheses: skewness and kurtosis coefficients.

Figure 6
Power (Percentage) for K = 6 as a Function of Distribution Shape, N, and ε̂  

Table 6
Sample Size at Which a Power of 80% is Reached as a Function of Distribution 
Shape, ε̂ , and Number of Repeated Measures (K)

K ε̂ Distribution 2
(γ1 = 1; γ2 = 1.5)

Distribution 3
(γ1 = 1.41; γ2 = 3)

Distribution 6
(γ1 = 2.31; γ2 = 8)

3 .50 70 70 70

.60 80 80 80

.70 70 70 70

.80 60 60 60

.90 70 70 70

4 .33 90 90 100

.40 70 70 70

.50 70 80 80

.60 60 60 60

.70 60 60 70

.80 60 60 60

.90 60 60 60

6 .20 90 90 100

.30 70 70 80

.40 70 70 80

.50 50 50 50

.60 50 50 50

.70 50 50 50

.80 50 50 50

.90 40 40 40

Note. γ1: skewness; γ2: kurtosis.
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For K = 4, B-F is again robust for distributions with γ1 ≤ 1.63 and 
γ2 ≤ 4 in all conditions manipulated. With higher values of γ1 and γ2 
and for N = 10 the procedure becomes conservative with ε̂  = 1, and 
liberal with low values of ε̂ . Overall, B-F is suitable for use with 
extreme deviation from both normality and sphericity when sample 
size is larger than 10. 

For K = 6, B-F is robust with very slight deviation from normality 
(γ1 = 0.4 and γ2 = 0.8) in all conditions studied. With the other 
distributions considered, it is conservative with high values of ε̂  and 
small sample size. A tendency towards liberality appears with severe 
deviation from normality, γ1 ≥ 2 and γ2 ≥ 6, with small values of 
ε̂  (ε̂  ≤ 30) and small sample sizes (N = 10 and 20). These results 
indicate that B-F may be used under extreme deviation from both 
normality and sphericity when sample size is larger than 20.

The results regarding liberality of B-F appear to contradict 
those of Berkovits et al. (2000), who found that the procedure 
was robust under all manipulated conditions. However, their 
study was conducted under more limited conditions (specifically, 
K = 4 and epsilon > .48) than was the case here. Consistent with 
Berkovits et al. (2000), our results for K = 4 and ε̂  = .50 likewise show 
that B-F is robust under all non-normality conditions. Our findings 
are also in line with those reported by Vallejo et al. (2006, 2010) 
when using a 3x4 split-plot design and ε̂  ≥ .50. The tendency we 
observed for B-F to be conservative with high ε̂  values was also 
documented in both these previous studies.

As a general rule, the first point to consider is that B-F may 
become conservative with higher values of ε̂ (e.g., ε̂  ≥ .80 for 
K = 6), in which case adjusted F-tests, such as Greenhouse-
Geisser and Huynh-Feldt adjustments, may be a better option 
(Blanca et al., 2023b, 2024). Second, B-F is suitable for use 
under violation of both sphericity and normality for distributions 
with γ1 ≤ 1.63 and γ2 ≤ 4. With non-normal distributions of these 
characteristics, B-F is superior to adjusted F-tests insofar as 
the latter have shown a tendency to be liberal with N = 10 and 
low values of ε̂  (Blanca et al., 2024). Third, with more extreme 
deviation from normality, B-F yields reliable results if N > 20. More 
specifically, B-F requires N > 10 for K = 3 if ε̂  ≤ .60 and for K = 4 
if ε̂  ≤ .50, whereas N > 20 is required for K = 6 if ε̂  ≤ .30. In these 
scenarios, B-F is slightly superior to adjusted F-tests as the latter 
require N > 30 (Blanca et al., 2024).

A possible option in those scenarios where B-F is liberal (e.g., 
under extreme violation of both normality and sphericity and 
small sample size) is to use a more stringent alpha level. This 
solution has been proposed previously with other statistical tests 
(Blanca et al., 2018; Keppel & Wickens, 2004; Tabachnick & Fidell, 
2007). Here we conducted simulations of these cases (see Table 5), 
considering nominal alpha levels of 2.5% and 1%, and computing 
B-F (results are shown in Table 7). In general, a nominal alpha level 
of 2.5% is sufficient to keep the Type I error rate for B-F within 
[2.5%, 7.5%] in all conditions. It is important to clarify here that 
using Bradley’s liberal criterion implies that the researcher assumes 
that the actual significance level is between 2.5% and 7.5% for the 
corresponding nominal value (5%, or 2.5% when a more stringent 
alpha level is used). 

As for empirical power, our results show that power increases 
with sample size, reflecting the well-known relationship between 
the two. We also found that deviation from normality did not 
affect the power of B-F. However, it is more sensitive to non-

sphericity: the greater the violation of sphericity, with ε̂  values 
close to the lower bound, the larger the sample size required to 
ensure adequate power. For example, and assuming 80% power 
to be adequate (Cooper & Garson, 2016; Kirk, 2013), a sample size 
of 90-100 is required for K = 6 and ε̂  = .20, whereas for ε̂  = .60, 50 
participants are sufficient to reach 80% power for a medium effect 
size. If we compare these results with those reported by Blanca et al. 
(2024) for the two adjusted F-tests, then B-F seems to have greater 
power in some cases as it is less affected by non-normality.

In conclusion, the B-F procedure offers an alternative for the 
analysis of repeated measures data with a nominal alpha of 5% under 
certain conditions specified in Table 5, which researchers may consult 
to decide if it is a correct option given the characteristics of their 
data. As a rule of thumb, and to ensure that B-F remains robust under 
non-normality and non-sphericity, a N > 20 is required to maintain 
Type I error rates ≤ 7.5%. In the event of extreme violations of both 
normality and sphericity and 10 ≤ N ≤ 20, B-F may be used if a 
more stringent alpha level (e.g., 2.5%) is considered. It should also be 
noted that with high ε̂  values the procedure may become conservative 
and require a N > 25. Researchers may consult Table 6 to determine 
the sample size at which 80% power is reached as a function of the 
number of repeated measures and other data characteristics.

Researchers may also wish to consider other alternatives to B-F, 
including the adjusted F-tests mentioned above, as well as classical 
non-parametric tests such as the Friedman test, multivariate 
analysis, and the linear mixed model (LMM). However, simulation 
studies have shown that these procedures also have limitations and 
can become liberal with violations of sphericity and small sample 
sizes (Berkovits et al., 2000; Blanca et al., 2023b, 2024; Harwell & 
Serlin, 1994; Haverkamp & Beauducel, 2017, 2019; Hayoz, 2007). 
A further limitation of the LMM relates to problems identifying the 
true structure of the covariance matrix (Brown & Prescott, 2006). 
An interesting line of future research would therefore be to compare 
these procedures and to analyze how they perform when used in 
conjunction with the bootstrap method. 

This study has a number of limitations that need to be 
acknowledged. First, the results are applicable only to the conditions 
studied here, that is, to designs containing 3, 4, and 6 repeated 
measures, and to non-normal distributions with values of skewness 
and kurtosis coefficients up to 2.31 and 8, respectively. Although 

Table 7
Type I Error Rates for Bootstrap-F (in Percentages) for a Nominal Alpha of 2.5% 
(1% in Parentheses) in the Conditions Under Which it is not Robust at the 5% 
Nominal Alpha Level (γ1: Skewness; γ2: Kurtosis)

K ε̂ N γ1 = 2, γ2 = 6 γ1 = 2.31, γ2 = 8

3
.50 10 4.62 (2.72)

.60 10 4.60 (2.48)

4

.33 10 5.00 (3.16) 5.68 (3.82)

.40 10 5.70 (3.52) 6.42 (4.30)

.50 10 4.76 (2.82)

6

.20 10 5.46 (3.64)

.30 10 5.26 (3.40) 6.06 (4.00)

.30 15 5.26 (3.34)

.30 20 5.14 (3.06)
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these conditions reflect a wide range of real-life scenarios, future 
research might focus on exploring the performance of B-F in 
designs with a larger number of repeated measures, in more 
complex experimental designs that incorporate both within- and 
between-subject factors, and with distributions showing greater 
deviation from normality. Investigation of these scenarios will 
provide a deeper understanding of the applicability of the procedure 
in various research contexts. Second, we have considered the 
unstructured covariance matrix as being the most general structure. 
Further research might include other types of structures that 
contemplate serial correlation, such as autoregressive, heterogeneous 
autoregressive, Toeplitz, etc. This would help to extend knowledge 
about the robustness of B-F under different dependency structures. 
Third, the data simulated here include complete cases without 
accounting for the presence of missing values. The importance of 
detecting patterns of missing data and mechanisms of loss, as well as 
selecting an appropriate imputation method, is widely acknowledged 
(Berglund & Heeringa, 2014; Vallejo et al., 2011). A possible avenue 
for further research would therefore be to analyze both Type I 
error and power of B-F with different patterns of missing data and 
different imputation methods. Finally, the present study focuses on 
the comparison of untrimmed means, so it would be interesting to 
explore the performance of B-F with trimmed means. Outliers often 
pose difficulties in data analysis, and the use of trimmed means is a 
procedure that can deal with this problem (Wilcox, 2022).

Author Contributions

María J. Blanca: Conceptualization, Methodology, Writing 
– Original draft, Formal Analysis. Roser Bono: Methodology, 
Software, Writing – Review and Editing. Jaume Arnau: 
Software, Writing – Review and Editing. F. Javier García-Castro: 
Methodology, Writing – Review and Editing. Rafael Alarcón: 
Methodology, Formal Analysis, Writing – Review and Editing. 
Guillermo Vallejo: Software, Writing – Review and Editing.

Acknowledgements

The authors would like to thank Macarena Torrado for her 
collaboration in this study.

Funding

This research was supported by the Ministry of Science and 
Innovation (grant PID2020-113191GB-I00 from the MCIN/
AEI/ 10.13039/501100011033 and by funding from the Regional 
Government of Andalusia to Consolidated Research Group 
CTS110). This funding source had no role in the design of this 
study, data collection, management, analysis, and interpretation 
of data, writing of the manuscript, or the decision to submit the 
manuscript for publication.

Declaration of Interests

The authors declare that there are no conflicts of interest. 

Data Availability Statement

Data are available at  https://dx.doi.org/10.24310/riuma.37706

References

Arnau, J., Bendayan, R., Blanca, M. J., & Bono, R. (2014). Should we rely 
on the Kenward–Roger approximation when using linear mixed models if 
the groups have different distributions? British Journal of Mathematical 
and Statistical Psychology, 67(3), 408–429. https://doi.org/10.1111/
bmsp.12026

Arnau, J., Bono, R., Blanca, M. J., & Bendayan, R. (2012). Using the linear 
mixed model to analyze nonnormal data distributions in longitudinal 
designs. Behavior Research Methods, 44(4), 1224–1238. https://doi.
org/10.3758/s13428-012-0196-y

Berglund, P., & Heeringa, S. (2014). Multiple imputation of missing data 
using SAS. SAS Institute Inc.

Berkovits, I., Hancock, G., & Nevitt, J. (2000). Bootstrap resampling approaches 
for repeated measure designs: Relative robustness to sphericity and 
normality violations. Educational and Psychological Measurement, 60(6), 
877–892. https://doi.org/10.1177/00131640021970961

Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2018). 
Effect of variance ratio on ANOVA robustness: Might 1.5 be the limit? 
Behavior Research Methods, 50(3), 937-962. https://doi.org/10.3758/
s13428-017-0918-2

Blanca, M. J., Arnau, J., García-Castro, F. J., Alarcón, R., & Bono, R. (2023a). 
Non-normal data in repeated measures: Impact on Type I error and power. 
Psicothema, 35(1), 21–29. https://doi.org/10.7334/psicothema2022.292

Blanca, M. J., Arnau, J., García-Castro, F. J., Alarcón, R., & Bono, R. (2023b). 
Repeated measures ANOVA and adjusted F-tests when sphericity is 
violated: Which procedure is best? Frontiers in Psychology, 14, Article 
1192453. https://doi.org/10.3389/fpsyg.2023.1192453

Blanca, M. J., Alarcón, R., Arnau, J., García-Castro, F. J., & Bono, R. 
(2024). How to proceed when both normality and sphericity are 
violated in repeated measures ANOVA. Anales de Psicología / Annals 
of Psychology, 40(3), 466–480. https://doi.org/10.6018/analesps.594291

Bono, R., Arnau, J., & Vallejo, G. (2010). Modelización de diseños split-plot 
y estructuras de covarianza no estacionarias: un estudio de simulación 
[Modeling split-plot data and nonstationary covariance structures: A 
simulation study]. Escritos de Psicología / Psychological Writings, 3(3), 
1–7. https://doi.org/10.5231/Psy.Writ.2010.2903

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study 
of analysis of variance problems II. Effect of inequality of variance and of 
correlation of error in the two-way classification. Annals of Mathematical 
Statistics, 25(3), 484–498. https://doi.org/10.1214/aoms/1177728717

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical 
Psychology, 31(2), 144–152. https://doi.org/10.1111/j.2044-8317.1978.
tb00581.x

Brown, H., & Prescott, R. (2006). Applied mixed models in medicine (2nd 
edition). Wiley.

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and 
researchers (2nd ed.). John Wiley & Sons, Inc.

Chernick, M. R., & LaBudde, R. A. (2011). An introduction to bootstrap 
methods with applications to R. John Wiley & Sons, Inc.

Christensen, A. P., & Golino, H. (2021). Estimating the stability of 
psychological dimensions via bootstrap exploratory graph analysis: A 
Monte Carlo simulation and tutorial. Psych, 3(3), 479–500. https://doi.
org/10.3390/psych3030032

Cooper, J. A., & Garson, G. D. (2016). Power analysis. Statistical Associates 
Blue Book Series.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals 
of Statistics, 7(1), 1–26. http://www.jstor.org/stable/2958830

https://dx.doi.org/10.24310/riuma.37706
https://doi.org/10.1111/bmsp.12026
https://doi.org/10.1111/bmsp.12026
https://doi.org/10.3758/s13428-012-0196-y
https://doi.org/10.3758/s13428-012-0196-y
https://doi.org/10.1177/00131640021970961
https://doi.org/10.3758/s13428-017-0918-2
https://doi.org/10.3758/s13428-017-0918-2
https://doi.org/10.7334/psicothema2022.292
https://doi.org/10.3389/fpsyg.2023.1192453
https://doi.org/10.6018/analesps.594291
https://doi.org/10.5231/Psy.Writ.2010.2903
https://doi.org/10.1214/aoms/1177728717
https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
https://doi.org/10.3390/psych3030032
https://doi.org/10.3390/psych3030032
http://www.jstor.org/stable/2958830


Blanca et al. / Psicothema (2025) 37(3) 12-22

22

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, 
and cross-validation. American Statistician, 37(1), 36-48. https://doi.
org/10.2307/2685844

Efron, B., & Tibshirani, R. J., (1993). An introduction to the bootstrap. 
Chapman & Hall.

Fleishman, A. I. (1978). A method for simulating non-normal distributions. 
Psychometrika, 43(4), 521–532. https://doi.org/10.1007/BF02293811

Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s results 
on the use of the F distribution in multivariate analysis. The Annals 
of Mathematical Statistics, 29(3) 885–891. https://doi.org/10.1214/
aoms/1177706545

Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of 
profile data. Psychometrika 24(2), 95–112. https://doi.org/10.1007/
BF02289823

Haverkamp, N., & Beauducel, A. (2017). Violation of the sphericity 
assumption and its effect on Type-I error rates in repeated measures 
ANOVA and multi-level linear models (MLM). Frontiers in Psychology, 
8, Article 1841. https://doi.org/10.3389/fpsyg.2017.01841

Haverkamp, N., & Beauducel, A. (2019). Differences of Type I error rates 
for ANOVA and multilevel-linear-models using SAS and SPSS for 
repeated measures designs. Meta-Psychology, 3, Article MP.2018.898. 
https://doi.org/10.15626/mp.2018.898

Harwell, M. R., & Serlin, R. C. (1994). A Monte Carlo study of the Friedman 
test and some competitors in the single factor, repeated measures design 
with unequal covariances. Computational Statistics & Data Analysis, 
17(1), 35–49. https://doi.org/10.1016/0167-9473(92)00060-5

Hayoz, S. (2007). Behavior of nonparametric tests in longitudinal design. 
15th European young statisticians meeting. http://matematicas.unex.
es/~idelpuerto/WEB_EYSM/Articles/ch_stefanie_hayoz_art.pdf

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional 
process analysis: A regression-based approach. Guilford Publications.

Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for 
degrees of freedom from sample data in randomized block and split-
plot designs. Journal of Educational Statistics, 1(1), 69–82. https://doi.
org/10.2307/1164736

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher’s 
handbook (4th ed.). Prentice Hall.

Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. 
(1999). A comparison of recent approaches to the analysis of repeated 
measurements. British Journal of Mathematical and Statistical 
Psychology, 52(1), 63–78. https://doi.org/10.1348/000711099158964

Keselman, J. C., Lix, L. M., & Keselman, H. J. (1996). The analysis of 
repeated measurements: A quantitative research synthesis. British 
Journal of Mathematical and Statistical Psychology, 49(2), 275–298. 
https://doi.org/10.1111/j.2044-8317.1996.tb01089.x

Kherad-Pajouh, S., & Renaud, O. (2015). A general permutation 
approach for analyzing repeated measures ANOVA and mixed-model 

designs. Statistical Papers, 56(4), 947–967. https://doi.org/10.1007/
s00362-014-0617-3

Kirk, R. E. (2013). Experimental design: Procedures for the behavioral 
sciences (4th ed.). Sage Publications.

Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). 
The analysis of repeated measurements with mixed-model adjusted F 
tests. Educational and Psychological Measurement, 64(2), 224–242. 
https://doi.org/10.1177/0013164403260196

Livacic-Rojas, P., Vallejo, G., & Fernández, P. (2010). Analysis of Type I 
error rates of univariate and multivariate procedures in repeated measures 
designs. Communications in Statistics – Simulation and Computation, 
39(3), 624–664. https://doi.org/10.1080/03610910903548952

Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the 
WRS2 package. Behavior Research Methods, 52, 464–488. https://doi.
org/10.3758/s13428-019-01246-w

Muller, K., Edwards, L., Simpson, S., & Taylor, D. (2007). Statistical tests 
with accurate size and power for balanced linear mixed models. Statistics 
in Medicine, 26(19), 3639–3660. https://doi.org/10.1002/sim.2827

Oberfeld, D., & Franke, T. (2013). Evaluating the robustness of repeated 
measures analyses: The case of small sample sizes and nonnormal 
data. Behavior Research Methods, 45(3), 792–812. https://doi.
org/10.3758/s13428-012-0281-2

Tabachnick, B. G., & Fidell, L. S. (2007). Experimental design using 
ANOVA. Thomson Brooks/Cole.

Vallejo, G., Ato, M., Fernández, P., & Livacic-Rojas, P. (2013). Multilevel 
bootstrap analysis with assumptions violated. Psicothema, 25(4), 520-
528. https://doi.org/10.7334/psicothema2013.58

Vallejo, G., Cuesta, M., Fernández, M., & Herrero, F. (2006). A comparison 
of the bootstrap-F, improved general approximation, and Brown-
Forsythe multivariate approaches in a mixed repeated measures design. 
Educational and Psychological Measurement, 66(1), 35–62. https://doi.
org/10.1177/0013164404273943

Vallejo, G., Fernández, M. P., Livacic-Rojas, P. E., & Tuero-Herrero, E. 
(2011) Comparison of modern methods for analyzing repeated measures 
data with missing values. Multivariate Behavioral Research, 46(6), 900–
937. https://doi.org/10.1080/00273171.2011.625320

Vallejo, G., Fernández, M. P., Tuero, E., & Livacic-Rojas, P. E. (2010). 
Análisis de medidas repetidas usando métodos de remuestreo [Analyzing 
repeated measures using resampling methods]. Anales de Psicología / 
Annals of Psychology, 26(2), 400–409. 

Voelkle, M. C., & McKnight, P. E. (2012). One size fits all? A Monte-
Carlo simulation on the relationship between repeated measures (M)
ANOVA and latent curve modeling. Methodology, 8(1), 23–38. https://
doi.org/10.1027/1614-2241/a000044

Wilcox, R. R. (2003). Applying contemporary statistical techniques. Gulf 
Professional Publishing.

Wilcox, R. R. (2022). Introduction to robust estimation and hypothesis 
testing. Academic Press.

https://doi.org/10.2307/2685844
https://doi.org/10.2307/2685844
https://doi.org/10.1007/BF02293811
https://doi.org/10.1214/aoms/1177706545
https://doi.org/10.1214/aoms/1177706545
https://doi.org/10.1007/BF02289823
https://doi.org/10.1007/BF02289823
https://doi.org/10.3389/fpsyg.2017.01841
https://doi.org/10.15626/mp.2018.898
https://doi.org/10.1016/0167-9473(92)00060-5
http://matematicas.unex.es/~idelpuerto/WEB_EYSM/Articles/ch_stefanie_hayoz_art.pdf
http://matematicas.unex.es/~idelpuerto/WEB_EYSM/Articles/ch_stefanie_hayoz_art.pdf
https://doi.org/10.2307/1164736
https://doi.org/10.2307/1164736
https://doi.org/10.1348/000711099158964
https://doi.org/10.1111/j.2044-8317.1996.tb01089.x
https://doi.org/10.1007/s00362-014-0617-3
https://doi.org/10.1007/s00362-014-0617-3
https://doi.org/10.1177/0013164403260196
https://doi.org/10.1080/03610910903548952
https://doi.org/10.3758/s13428-019-01246-w
https://doi.org/10.3758/s13428-019-01246-w
https://doi.org/10.1002/sim.2827
https://doi.org/10.3758/s13428-012-0281-2
https://doi.org/10.3758/s13428-012-0281-2
https://doi.org/10.7334/psicothema2013.58
https://doi.org/10.1177/0013164404273943
https://doi.org/10.1177/0013164404273943
https://doi.org/10.1080/00273171.2011.625320
https://doi.org/10.1027/1614-2241/a000044
https://doi.org/10.1027/1614-2241/a000044

